find solution of differential equation d2y/dx2+4y=sin2x
solve differential equation (D2+4) y=sin2x
Solve Differential Equation d2y/dx2+4y=sin2x
Differential it can be written as (D2+4) y= sin2x
Find complementary function
F(D)=0
D2+4=0
D=2i and D=-2i
Roots are imaginary (a+ib). Now
C.F=eax(C1 cos bx +C2 sin bx)…………(1)
a=0,b=2
from equation (1)
C.F.=C1 cos 2x +C2 sin 2x………………….(2)
Find particular integral
P.I.=f(x)/f(D)= sin2x/ (D2+4)=1/(D2+4) .(1-cos 2x)/2
=1/2 [.1/ (D2+4)] -1/2[[.1/ (D2+4) cos2x] { case is failure)
=1/2 .1/4 –[x .1/2D cos 2x]
=1/8 - x/2 (sin 2x)/2
P.I.= 1/8-x/4 sin2x
General solution
y=C.F.+P.I.
y= C1 cos 2x +C2 sin 2x+1/8-x/4 sin2x
0 Comments
PLEASE DO NOT ENTER ANY SPAN LINK IN THE COMMENT BOX