Complex Number : Demoivre's Theorem
In this article we have discussed some basic problem of algebraic equation solve by Demoivre's Theorem. this article helpful to Undergraduate science students. This is also helpful to Engineering Students , Polytechnic students ,IIT JEE and NDA students.
इस लेख में हमने डेमोइवर के प्रमेय द्वारा हल बीजीय समीकरण की कुछ बुनियादी समस्या पर चर्चा की है। यह लेख स्नातक विज्ञान के छात्रों के लिए उपयोगी है। यह इंजीनियरिंग छात्रों, पॉलिटेक्निक छात्रों, IIT JEE और NDA के छात्रों के लिए भी मददगार है।
Solve of the following problem:
Q.1)solve algebraic equation x^3+1=0 using Demoivre's Theorem
डेमोइवर के प्रमेय का उपयोग करके बीजीय समीकरण x^3+1=0 हल करें
Q.2)solve algebraic equation x^-1=0 using Demoivre's Theorem
Q.3)solve algebraic equation x^4+1=0 using Demoivre's Theorem
Q.4)solve algebraic equation x^4-1=0 using Demoivre's Theorem
Q.5)solve algebraic equation x^5+1=0 using Demoivre's Theorem
Q.6)solve algebraic equation x^5-1=0 using Demoivre's Theorem
Q.7)solve algebraic equation x^4+x^3+x^2+x+1=0 using Demoivre's Theorem
Q.8) solve algebraic equation x^4-x^3+x^2-x+1=0 using Demoivre's Theorem
Q.9)solve algebraic equation x^5+x^3+x^2+1=0 using Demoivre's Theorem
Q.10)solve algebraic equation x^7+x^4+x^3+1=0 using Demoivre's Theorem
Working rule to find nth roots of complex number x+iy
or (x + i y)^1/n
1. z=(x+iy)^1/n
2. write polar form z= [ r (cos + i sin ) ]^1/n
z= [ r { cos (2k + ) +i sin (2k + )}]^1/n
where k= 0 ,1 ,2 , 3, ...............(n-1)
0 Comments
PLEASE DO NOT ENTER ANY SPAN LINK IN THE COMMENT BOX